# Midterm Review More on Strings 

CS 8: Introduction to Computer Science, Winter 2018
Lecture \#8
Ziad Matni
Dept. of Computer Science, UCSB

## Administrative

- Homework \#3 due today
- Homework \#4 is due next Wednesday (2/21)
- Project \#1 is up on the website
- Midterm is on Wednesday!


## Lecture Outline

- About the Midterm Exam
- Character manipulation in strings
- Review questions


## MIDTERM IS COMING!

- Material: Everything we've done, incl. up to Mon. 2/12
- Homework, Labs, Lectures, Textbook
- Wednesday, 2/14 in this classroom
- Starts at 9:30pm **SHARP**
- Duration: 1 hour 15 minutes long
- Closed book: no calculators, no phones, no computers

- You will write your answers on the exam sheet itself.
- Attention DSP students: Please follow up with DSP or you will not be accommodated!


## Bring your UCSB IDs to the examill exam!!!

## What's on the Midterm\#1? <br> All Lecture Materials, Including...

- What is CS? What are computers? Brief history
- What is programming? How does abstraction fit in?
- Numbers and Arithmetic in Python
- Variables in Python
- Modules in Python including turtle
- Loops using for
- Different uses of range
- Implementing accumulations
- Conditional statements using if/elif/else
- Boolean Logic
- Random Number Generation
- Functions - how to define them, how to call them
- Strings in Python


## What's on the Midterm\#1? Textbook Readings

- Ch. 1 (all)
- Intro to Python
- Ch. 2 (all)
- Finding Pi:
a context to learn/use loops, functions, random numbers
- Ch. 3 (sections 3.1 and 3.2)
- Strings and their manipulations


## What's on the Midterm\#1? Homework and Labs

- Review them and understand what you did
- The lab processes and experiences, especially


## What Will it Look Like?

- Multiple Choice
- Fill in the Blanks
- Write code
- We will do some questions from the review sheet later today


## Functions chr(n) and ord (c)

- Characters are stored as numbers in computer memory
- There are standard codes for characters, e.g. ASCII, UTF-8, etc...
- For example, 'A' has code 65 in ASCII
- Use the ord function to verify this: ord ('A') is 65
- Notice 'A' is not same as 'a': ord('a') is 97
- Every character, seen (e.g. \%, !, G, =, space, tab,...) and unseen (e.g. CONTROL-X, newline...) has an ASCII code


## ASCII TABLE

| Decimal | Hex | Char |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | [NULL] | 32 | 20 | [SPACE] | 64 | 40 | @ | 96 | 60 | * |
| 1 | 1 | [START OF HEADING] | 33 | 21 | ! | 65 | 41 | A | 97 | 61 | a |
| 2 | 2 | [START OF TEXT] | 34 | 22 | " | 66 | 42 | B | 98 | 62 | b |
| 3 | 3 | [END OF TEXT] | 35 | 23 | \# | 67 | 43 | C | 99 | 63 | c |
| 4 | 4 | [END OF TRANSMISSION] | 36 | 24 | \$ | 68 | 44 | D | 100 | 64 | d |
| 5 | 5 | [ENQUIRY] | 37 | 25 | \% | 69 | 45 | E | 101 | 65 | e |
| 6 | 6 | [ACKNOWLEDGE] | 38 | 26 | \& | 70 | 46 | F | 102 | 66 | f |
| 7 | 7 | [BELL] | 39 | 27 | , | 71 | 47 | G | 103 | 67 | g |
| 8 | 8 | [BACKSPACE] | 40 | 28 | 1 | 72 | 48 | H | 104 | 68 | h |
| 9 | 9 | [HORIZONTAL TAB] | 41 | 29 | ) | 73 | 49 | I | 105 | 69 | i |
| 10 | A | [LINE FEED] | 42 | 2A | * | 74 | 4A | J | 106 | 6 A | j |
| 11 | B | [VERTICAL TAB] | 43 | 2B | + | 75 | 4B | K | 107 | 6B | k |
| 12 | C | [FORM FEED] | 44 | 2C | , | 76 | 4C | L | 108 | 6C | I |
| 13 | D | [CARRIAGE RETURN] | 45 | 2D | - | 77 | 4D | M | 109 | 6D | m |
| 14 | E | [SHIFT OUT] | 46 | 2E | , | 78 | 4E | N | 110 | 6E | n |
| 15 | F | [SHIFT IN] | 47 | 2 F | 1 | 79 | 4F | 0 | 111 | 6 F | 0 |
| 16 | 10 | [DATA LINK ESCAPE] | 48 | 30 | 0 | 80 | 50 | P | 112 | 70 | p |
| 17 | 11 | [DEVICE CONTROL 1] | 49 | 31 | 1 | 81 | 51 | Q | 113 | 71 | q |
| 18 | 12 | [DEVICE CONTROL 2] | 50 | 32 | 2 | 82 | 52 | R | 114 | 72 | r |
| 19 | 13 | [DEVICE CONTROL 3] | 51 | 33 | 3 | 83 | 53 | S | 115 | 73 | S |
| 20 | 14 | [DEVICE CONTROL 4] | 52 | 34 | 4 | 84 | 54 | T | 116 | 74 | t |
| 21 | 15 | [NEGATIVE ACKNOWLEDGE] | 53 | 35 | 5 | 85 | 55 | U | 117 | 75 | u |
| 22 | 16 | [SYNCHRONOUS IDLE] | 54 | 36 | 6 | 86 | 56 | V | 118 | 76 | $v$ |
| 23 | 17 | [ENG OF TRANS, BLOCK] | 55 | 37 | 7 | 87 | 57 | W | 119 | 77 | w |
| 24 | 18 | [CANCEL] | 56 | 38 | 8 | 88 | 58 | $\mathbf{X}$ | 120 | 78 | X |
| 25 | 19 | [END OF MEDIUM] | 57 | 39 | 9 | 89 | 59 | Y | 121 | 79 | y |
| 26 | 1A | [SUBSTITUTE] | 58 | 3A | : | 90 | 5A | Z | 122 | 7A | z |
| 27 | 1B | [ESCAPE] | 59 | 3B | ; | 91 | 5B | [ | 123 | 7B | \{ |
| 28 | 1 C | [FILE SEPARATOR] | 60 | 3 C | $<$ | 92 | 5 C | 1 | 124 | 7 C | 1 |
| 29 | 1D | [GROUP SEPARATOR] | 61 | 3D | $=$ | 93 | 5D | ] | 125 | 7D | \} |
| 30 | 1E | [RECORD SEPARATOR] | 62 | 3E | $>$ | 94 | 5E | ヘ | 126 | 7E | $\sim$ |
| 31 | 1 F | [UNTT SEPARATOR] | 63 | 3F | ? | 95 | 5 F | - | 127 | 7F | [DEL] |

## Functions chr (n) and ord (c)

- Likewise, you can find character associated with a particular code using chr function, for example:

$$
\operatorname{chr}(65) \text { is ' } \mathrm{A} \text { ' }
$$

- You can manipulate numbers in order to process characters

$$
\operatorname{chr}(\operatorname{ord}(' a ')+3) \text { is chr(97), which is 'd' }
$$

- Notice digit characters have codes too!

$$
\text { ord('6') is } 54
$$

## Examples

- How can I find out what's 13 letters after 'e'??
- Easy answer: recite the alphabet from 'e' and count 13 places
- Code answer: chr( ord('e') + 13 ), which is 'r'
- How can I find out what's 19 letters before 'Z'??
- Code answer: chr( ord('Z') - 19), which is 'G'
- What's the ASCII code for the hashtag character??
- Code answer: ord('\#'), which is 35


## Harder Example...

- How can I do a "add" of 2 numeral characters to get another numerical character, like ' 3 ' and ' 4 ' and get ' 7 '??
- First ask: how can I make ' 3 ' into 3 ? (HINT: We'll need a baseline...)
- That baseline is ord (' 0 ') --- how far away in the ASCII is ' 3 ' from ' 0 '???
- $\operatorname{ord}\left(3^{\prime}\right)-\operatorname{ord}\left({ }^{\prime} 0^{\prime}\right)=3$
- So the "addition" is done like this:

$$
\begin{aligned}
& \operatorname{ord}\left({ }^{\prime} 3^{\prime}\right)-\operatorname{ord}\left(0^{\prime}\right)+\operatorname{ord}\left({ }^{\prime} 4^{\prime}\right)-\operatorname{ord}\left(0^{\prime}\right)=7 \\
& \text { or, } \quad \underline{\operatorname{ord}\left(3^{\prime}\right)+\operatorname{ord}\left(3^{\prime}\right)-2^{*} \operatorname{ord}\left({ }^{\prime} 0^{\prime}\right)=7}
\end{aligned}
$$

Then, to switch the answer from a number (7) to a character (' 7 '):

$$
\operatorname{chr}\left(\operatorname{ord}\left({ }^{\prime} 3^{\prime}\right)+\operatorname{ord}\left({ }^{\prime} 4^{\prime}\right)-2^{*} \operatorname{ord}\left({ }^{\prime} 0^{\prime}\right)+\operatorname{ord}\left({ }^{\prime} 0^{\prime}\right)\right)={ }^{\prime}
$$

## So I Can Create a Function to do This!

```
def addChars(char1, char2):
    numAddASCII = ord(char1) + ord(char2) - ord('0')
    charNum = chr(numAddASCII)
    return charNum
```


## Important Caveat!

Only works with 1 character numbers!

## str(), int(), and float() Functions

- You can translate from one data type into another
- To change a variable from int or float into a string type, use the str() function
- Example: $a=9.44$, means that $\operatorname{str}(a)=‘ 9.44 ’$
- To change a variable from string, into an integer type use the int() function (or use the float() function if you need a float type)
- Example1: s = '102’, means that int(s) = 102
- Example2: $s={ }^{〔} 10 . \mathbf{2}^{\prime}$, means that float( $s$ ) $=102.0$
- Why would we want to do this?


## What's the Difference Between return and print ???

## print

- Can go inside functions or outside of them
- Sends whatever's between the () to the "standard output"
- i.e. prints to your computer display, usually
return
- Only belongs/used in functions
- Sends whatever's between the () back to whatever "called" the function
- i.e. no printing of any sort involved!


## What's the Difference Between return and print ???

```
print
Example:
def fun(a):
    b = 2*a + 1
    print(b)
    return(b)
x = fun(5)
# Call fun() with an argument of 5
y = x + 4
```

This will call fun() with 5 , which prints the number 11 and also returns the number 11 to variable $\mathbf{x}$ in the main program, so that variable $\mathbf{y}$ can become the number 15 .

## return

## Example:

```
def fun(a):
    b = 2*a + 1
    return(b)
```

$x=\operatorname{fun}(5)$
\# Call fun() with an argument of 5
$y=x+4$
print(x)

This will call fun() with 5, which ONLY returns the number 11 to variable $\mathbf{x}$ in the main program, so that variable $y$ can become the number 15. The main program also prints out the number 11.

# Let's Go Over Some of the Review Questions! 

## YOUR TO-DOs

$\square$ Do Homework4 (due Wednesday 2/21)
$\square$ No Lab this Week!
$\square$ Study for your Midterm Exam!

Embrace randomness

## </LECTURE>

