
Finding Pi:
Applications of Loops, Random Numbers, Booleans

CS 8: Introduction to Computer Science, Winter 2018
Lecture #6

Ziad Matni

Dept. of Computer Science, UCSB

Administrative
•  New Homework (#3) is online – due next Monday
•  New Lab (#2) this week

•  The grader, Vivek Pradhan, will hold office hours
on Thursdays from 3pm to 4pm in the CSIL lab

•  Midterm is on Wednesday, Feb 14th

2/5/18 Matni, CS8, Wi18 2

Lecture Outline
•  More Loops with Mathematical Applications

–  Looking for Pi in all the Right Places…

•  Characters and Strings in Python

2/5/18 Matni, CS8, Wi18 3

Class Exercise
Get together with 2 or 3 other people around you and answer this question.

You can use your notes from other lectures:

Write Python code that asks a user for a number between 0 and 200 (inclusive).
Call that variable SideParam. Then it asks the user for another number between 3
and 360 (inclusive). Call that variable Sides.

a)  The code should first check that the 2 input numbers do indeed meet this criteria.
Bonus points if you can do this with ONE if-statement! If any of the criteria is not met,
you should print a message to say it was out of range and stop.

b)  Then, have your code use the Turtle graphics module to draw a polygon with number
of sides equal to Sides and having side lengths to half of SideParam, plus 50.

2/5/18 Matni, CS8, Wi18 4

An Ancient Problem: Finding π
•  Ratio of a circle’s circumference to its diameter

π  =	circumference	/	diameter			#	for	any	circle	

•  Irrational number: an infinite series of non-repeating digits
–  So it can never be represented exactly, only approximated

•  Chapter 2 explores various ways to approximate pi
–  But just to teach problem-solving. For calculating, use math.pi module

import	math	#	necessary	to	use	math	module	
area	=	math.pi	*	radius	*	radius	

•  By the way, the math module has lots of other cool stuff
–  Square root, trig functions, e, … for more info on IDLE, try >>>	help(math)	

2/5/18 Matni, CS8, Wi18 5

The math Library
Contains lots of often-used mathematical functions, like:
•  math.fabs(x) 	 	#	Returns	the	absolute	value	of	x	
•  math.exp(x) 	 	#	Returns	e**x	
•  math.pow(x,y)	 	#	Returns	x**y	
•  math.sqrt(x) 	 	#	Returns	the	square-root	of	x	
•  math.log(x,	b) 	#	Returns	the	log	of	x,	base	b	
•  math.sin(x)			or .cos(x)			or .tan(x)	 	#	Trig	functions	
•  math.pi	 	 	 	#	Returns	pi	(3.141…)	
•  math.e 	 	 	 	#	Returns	e	(2.718…)	

•  See https://docs.python.org/2/library/math.html for full details

2/5/18 Matni, CS8, Wi18 6

Must be import-ed

CLASS DEMO

Accumulator Pattern
•  We can calculate PI using summing infinite series

–  General idea applies to counting, summing, …

•  Idea: set initial value, then loop to update a running sum
–  e.g., add numbers 1 through 5:

sum	=	0	 	 	#	initialize	sum	(accumulator	variable)	
for	number	in	range(1,	6):	
				sum	=	sum	+	number	#	updates	sum	

•  See textbook for 2 different ways to find pi:
–  Leibniz Formula – summation of terms (p.58) --- ACCUMULATED SUM
–  Wallis Formula – product of terms (p. 60) --- ACCUMULATED PRODUCT

2/5/18 7

Liebniz Formula

•  So, the formula suggests that:
π  = 4 . { Σ (-1)n . [1 / (2n + 1)] } as n goes from 0 à ∞

•  When n = 0, πest = 4 . (1) = 4
•  When n = 1, πest = 4 . (1 – 1/3) = 8/3 = 2.66667
•  When n = 2, πest = 4 . (1 – 1/3 + 1/5) = 3.46667
…
•  When n = 100, πest = 4 . (1 – 1/3 + 1/5 + … + 1/201) = 3.13159

2/5/18 Matni, CS8, Wi18 8 CLASS DEMO: HOW TO CODE THIS!

Accumulated Product
•  Example: How would you create a function that takes a

positive integer N and returns the product of all numbers
less than or equal to N?

•  In other words: Product(N) = 1 x 2 x 3 x … N

•  Example: Product(3) = 6,
 Product(4) = 24, etc…

2/5/18 Matni, CS8, Wi18 9 CLASS DEMO: HOW TO CODE THIS!

Random Values
•  “Pseudo-random” values can be generated using special functions

in most programming languages

•  In Python use functions of the random module
–  Simplest is random.random() – returns a floating point value between

0.0 and 1.0
–  Also randrange(n), randint(low,	high), shuffle(list) and many

others
–  Try help(random)	to learn more … and play around with it

•  For example, Listing 2.5 uses random()	for x, y dart locations

2/5/18 Matni, CS8, Wi18 10 CLASS DEMO: HOW TO USE random

Must be import-ed

Monte Carlo Simulation
•  A popular statistical method using randomness to solve problems.

–  Used in many simulation – traffic flows, length of bank queues, etc…

•  In the case of estimating pi – imagine throwing darts at a unit circle
(i.e. r	=	1) inscribed inside a square (i.e. whose side = 2r = 2)

–  Circle area = πr²	=	π
–  Square area = 2	*	2	=	4	
–  So if n darts hit the square, how many darts (k) should land inside the circle by

chance alone?
–  As it turns out, that’s proportional to the area of the circle divided by the area

of the square.
–  Answer: k	=	n	*	π/4. In other words, we can approximate πest	=	4	*	k/n	

2/5/18 Matni, CS8, Wi18 11 CLASS DEMO: HOW TO USE random

See Listing 2.5 in textbook

montePi(numDarts)
	def	montePi(numDarts):	
	 	 	 	#	numDarts	is	the	number	of	darts	that	we	throw	at	the	square	

	k	=	0	 	#	k	is	the	nuber	of	darts	that	hit	the	circle	inside	the	square	
	

	for	i	in	range(numDarts):	
	 	x	=	random.random() 	 	 	#	x	and	y	are	random	coordinates	
	 	y	=	random.random() 	 	 	#	representing	the	dart	throw	location	
	 	d	=	math.sqrt(x**2	+	y**2)		 	#	d	=	distance	between	(x,y)	and	origin	(0,0)	
	 	if	d	<=	1:	 	 	 	 	#	if	d	<=	1,	it	means	that	the		
	 	 	k	=	k	+	1		 	 	 	#	hit	is	within	the	circle,	so	count	those	
		
	pi	=	4	*	(k	/numDarts)	
	return	pi	

	

QUESTION: How close do we get to actual π using this method?
 (see demo from class…)

2/5/18 Matni, CS8, Wi18 12

Boolean Expressions
•  Expressions that evaluate to True or False	
•  Relational operators: <			<=			>			>=			==			!=	

Example: 9	>	7	is	True, while (4.5	–	3)	>=	(3	–	1.3)	is	False		
	

•  Watch out when using == or !=	with floating point numbers
Example: 100/3	==	33.3333	
–  Instead it’s better to compare absolute difference to a small value
abs(100/3	-	33.3333)	<	0.0001	

2/5/18 Matni, CS8, Wi18 13

True (why?)

False (why?)

Compound Boolean Expressions
•  Logical operators: and,	or,	not	
•  Their operands are Boolean values:

True	and	False	
7	<	9	and	100	>	10	
400	/	10	==	92	or	8	>	3	
not	6	>	150	

•  Special Python feature: low	<=	value	<=	high	
•  The special role that 0 and 1 play	

–  See other behavior notes in Table 2.2 (p. 66)
2/5/18 Matni, CS8, Wi18 14

True

False

True

True

YOUR TO-DOs
q  Finish reading Chapters 2 and 3 for next class
q  Finish Homework3 (due Monday 2/12)
q  Finish Lab2 (due Wednesday 2/7)

q  Run through an open meadow

2/5/18 Matni, CS8, Wi18 15

2/5/18 Matni, CS8, Wi18 16

