
Introduction to Python, Part 1

CS 8: Introduction to Computer Science, Winter 2018
Lecture #3

Ziad Matni
Dept. of Computer Science, UCSB

A Word About Registration for CS8
• I will let a few people into the class today

from the waitlist.

• After that, this class will be FULL,
& the waitlist will be CLOSED.

1/24/2018 Matni, CS8, Wi18 2

Lecture Outline
• Numbers and Arithmetic in Python
• Variables in Python
• The Python Interpreter

– Using Python IDLE tool for demos/labs
• Modules
• Functions

1/24/2018 Matni, CS8, Wi18 3

Yellow Band = Class Demonstration! 

Note: Difference Between
Python IDLE and Python Programs

• Python IDLE is the program we use to demonstrate
Python in class
– You can also use it at home to do one line at a time Python code

• If you want to create a Python program, then you will
place all the program code inside a text file
– Text file always ends in .py
– You can run (execute) the program from Python IDLE

1/24/2018 Matni, CS8, Wi18 4

Numbers are Objects to Python
• Each object type has: data and related operations

• 2 basic number types and one derived type
– Integers (like 5, -72) – add, subtract, multiply, …
– Floating point numbers (like 0.005, -7.2) – operations similar but not

exactly the same as integer operations
– Complex numbers (like 3.4 + j5) – have two floating point parts, but

operations are specific to complex numbers

• Expect many non-number object types later in the quarter…
– But they also have data and related operations

1/24/2018 Matni, CS8, Wi18 5

Problem-Solving Strategizing
• Helps to think about a problem at different scales

– Big picture first – devise a general, overall strategy
– Then progressively refine the overall solution by applying tactics

and tools
– Overall approach in computer science is known as

“top-down programming by stepwise refinement”

• Best strategies, tactics and tools vary by problem
– Idea: learn techniques applicable to many situations

• But first learn about our basic tools – computers

1/24/2018 Matni, CS8, Wi18 6

Arithmetic Summary
Operators:

+ - * / add, subtract, multiply, (ordinary) divide
% modulus operator – remainder

() means whatever is inside is evaluated first
** raise to the power

Special Python division operator for integers:
// result is truncated: 7 // 2  3 (not 3.5)

Precedence rules so far (will expand):

1/24/2018 Matni, CS8, Wi18 7

1. ()
2. **
3. *, /, %, //
4. +, -
5. =

Some Notes on
Floating Point & Complex Number Operations

• Floating Point
– Can use Scientific Notation: “AeN” equivalent to “A x 10N”
– A is a real number, but N must be an integer

(i.e. positive/negative whole number)
• Complex Numbers

– Form is: x + yj
• Note NO SPACE between y and j

– All arithmetic operations return complex numbers
• So, 5j ** 2 returns -25 + 0j

1/24/2018 Matni, CS8, Wi18 8

Comments in Python
• Anything placed after the # symbol is considered

a “comment”
– Is completely ignored by the compiler
– Typically place commentary next to code for the

benefit of others (humans) reading our code

1/24/2018 Matni, CS8, Wi18 9

Variables
• A variable is a symbolic reference to data

• The variable's name represents what information it
contains

• They are called “variables” because
--- data can VARY or change ---

while operations on the variable remain the same
– e.g. Variables “a” and “b” can take on different values,

but I may always want to add them together
101/24/2018 Matni, CS8, Wi18

1.5a 3.3b

Variables
• Variables are like “buckets” that can keep data

– You can label these buckets with a name
– When you reference a bucket, you use its name,

not the data stored in the bucket
– You can “re-use” the buckets

• If two variables are of the same type, you can perform
operations on them

11

SCORE GRADE

96 “A”

1/24/2018 Matni, CS8, Wi18

Variables in Python
• We assign a value to variables with the

assignment operator =
– Example: >>> a = 3

• We can change that value stored
– Example: >>> a = 5 # it’s not 3 any more!!!

1/24/2018 Matni, CS8, Wi18 12

Assigning Names to Variables
• Variable names are actually references
• Like “pointers” to objects
• Can have multiple references to the same object

x = 5 # x refers to an integer
y = x # Now x and y refer to the same object

1/24/2018 Matni, CS8, Wi18 13

Assigning Names to Variables
• Dynamic typing is a key Python feature
• Any legal name can point to any data type –

even different types at different times

x = 5 # x refers to an integer
y = x # Now x and y refer to the same object
x = 1.2 # Now x refers to floating point 1.2

(y still refers to the integer 5)

1/24/2018 Matni, CS8, Wi18 14

Variable Names in Python
3 simple rules for choosing names:
• Can ONLY use letters, digits, and _ (underscores) only

– So, UserName, Age1, Age2, _Deviation are ok

• Must NOT begin with a digit or non-alphabet character (except
underscore)
– So, 2Good2BTrue, $$MaMoney!!, <0_0>, #YOLO won’t work…

• Cannot use Python keywords (see Table 1.1 on p. 22)
– Example: def, False, True, print, etc…

1/24/2018 Matni, CS8, Wi18 15

Variable Names in Python:
Other Conventions

• Choose brief, but meaningful names
• Most programmers prefer lower case use

– Example: total vs. TOTAL
• Use either “camel case” or underscore to separate words

– Camel Case is using capital letters to separate words, like NumOfCats
– Underscoring is using underscores to separate words, like num_of_cats
– Be consistent: use one or the other

• All the above applies to function names, module names, etc…

1/24/2018 Matni, CS8, Wi18 16

Objects
• An object in Python is anything that has:

– an identity a type a value

• Example: pi = 3.14159
– Identity: pi
– Type: floating point
– Value: 3.14159

• Additionally, objects can have:
– Attributes
– Methods

1/24/2018 Matni, CS8, Wi18 17

 More on these later…

Demo
Let’s try this out – what do you think it’ll do?

pi = 3.14159
radian_angle = 0.7853975
degree_angle = radian_angle*180/pi
print(degree_angle) # What is print()?

1/24/2018 Matni, CS8, Wi18 18Let’s try it out!

Procedural Abstraction:
The Function

• A “black box” – a piece of code that can take
inputs and gives me some expected output

• A function, for example, is a kind of procedural
abstraction
25  Square Root Function 5

• What’s happening inside the function?
• Doesn’t matter, as long as it works!!

1/24/2018 Matni, CS8, Wi18 19

Functions
• A function does “something” to one/several

input(s) and sends back one/several
output(s)
– Always has braces to “carry” the inputs

• Example: the sqrt() function (square root)
– With an input of 25, I expect an output of 5
– That is, sqrt(25) will give me 5

1/24/2018 Matni, CS8, Wi18 20

More About Functions

1/24/2018 Matni, CS8, Wi18 21

• “Self contained” modules of code that accomplish a
specific task.

• Functions have inputs that get processed and the
function often (although not always) “returns” an output
(result).

• Can be “called from” the main block of the program
– Or from inside other functions!

More About Functions

1/24/2018 Matni, CS8, Wi18 22

• A function can be used over and over again.
– Example:

Consider a function called “distance” that returns the value of
the distance between a point w/ coordinates (a, b) and the
Cartesian origin (0, 0)

• We will learn how to craft functions later on…

distance (a, b) = square root of (a2 + b2)

Modules and Objects
• A module is a description of an abstraction that can

help with the programming
– Sooooo…. It’s a function?
– Nooooo…. It’s a mega-function, of sorts…
– And it can be “objectified”, unlike functions

• Libraries, Classes, etc… More on those later

• A module can contain multiple functions and we can
“call it up” as different versions of the same thing

1/24/2018 Matni, CS8, Wi18 23

Example: Modules & Objects
Let’s say, there’s a module (a “black box”) called a “Piano”.
It has 12 inputs (keys that play notes). Every input I engage the inputs,
an output is the result – a certain note is played.

I can also create multiple “instances” or “objects” of the module “Piano”.

1/24/2018 Matni, CS8, Wi18 24

The Turtle Module Example
• A “Turtle”, for example is a kind of data abstraction – and it

has some functions too
– It’s a simple graphics tool that’s already been created for you to use

• To use it in Python, first “import” it in
>>> import turtle

• To create an “instance” of “Turtle”, do the following:
>>> t = turtle.Turtle()

1/24/2018 Matni, CS8, Wi18 25Let’s try it out!
 Don’t worry about why that is for now…

>>> t.forward(50)
>>> t.right(90)
>>> t.forward(50)
>>> t.right(90)
>>> t.forward(50)
>>> t.right(90)
>>> t.forward(50)

How Do We “Call” A Function?
• To use (a.k.a. invoke or call) a function:

functionName(list of arguments)
• The list of arguments is typically all the inputs to the function
• These arguments are “passed into” the function
• When function completes/is executed – we are returned to the point in

the program where the function was called
– It may also return a result – it depends on the function definition

• Need to use the “.” (dot operator) if the function is defined inside a
module

– Then full syntax is: moduleName.functionName(…)
– Sometimes written as: objectReference.methodName(…)

1/24/2018 Matni, CS8, Wi18 26

Example of a Function Call
• Let’s adopt the function we mentioned earlier: distance(a, b)

… # inside the Python code…
a = 3.0
b = 4.0
d = distance(a, b)
x = d – b
… # more down here

• What will the value of variable d be? What about x?
• Will type of variable will d be? And x?

1/24/2018 Matni, CS8, Wi18 27

Defining Your Own Function
• To define a function in Python, the syntax is:

def functionName (list of parameters):
a block of statements appear here
all of them must be indented (with tabs)

– def – a mandatory keyword that defines a function
– functionName – any legal Python identifier (e.g. myLittleFunction)
– (): – mandatory set of parentheses and colon
– list of parameters – object names

• Local references to objects (i.e. raw data or variables) that are passed into the
function

– e.g. def myLittleFunction(pony1, pony2, 3.1415):

1/24/2018 Matni, CS8, Wi18 28

Example Definition
This function calculates the distance between (a,b) and (0,0)
def distance(a, b):

x = a**2 # Note the tab indent!!!
y = b**2 # Recall ** means “to the power of”
z = (x + y) ** 0.5
return z # I need to “return” the result

!!! Alternatively !!!
def distance(a, b):

return ((a**2) + (b**2)) ** 0.5

1/24/2018 Matni, CS8, Wi18 29

Let’s try it out!

A Function To Draw A Square
• Part of listing 1.2 from the text (p. 30)

def drawSquare(myTurtle, sideLength):
myTurtle.forward(sideLength)
myTurtle.right(90) # side 1
…

• Then to invoke it for drawing a square that has 20
pixels on each side using a turtle named t:
>>> drawSquare(t, 20)

• What might happen if we invoked drawSquare(20, t)?
1/24/2018 Matni, CS8, Wi18 30

Let’s try it out!

• Imagine that the drawSquare function is in a file on your computer called
ds.py

• We have two basic choices to use this function:
1. Import the whole module, and specify the part of the module to use
>>> import ds

>>> ds.drawSquare(t, 20)

2. Import part(s) of module, then just use the part(s)
>>> from ds import drawSquare

>>> drawSquare(t, 20)

Importing From A Module

1/24/2018 Matni, CS8, Wi18 31

• Of course, Python must be told where ds.py is on the computer!
• How do we do that?

o Store the file in the same directory where you’re running Python
(also known as the “current directory”)

o Place the pathname in sys.path
• This is a little involved and you might need help with it
• “sys” is a standard Python module and “path” is one of its objects that stores

the directory paths where your Python files will reside

o In Python IDLE, Go to File  Open and open ds.py

Importing From A Module

1/24/2018 Matni, CS8, Wi18 32

YOUR TO-DOs
 Read Chapter 2
 Finish Homework1 (due Monday!)
 Prepare for Lab1 next week

 Hug a tree
1/24/2018 Matni, CS8, Wi18 33

1/24/2018 Matni, CS8, Wi18 34

	Introduction to Python, Part 1
	A Word About Registration for CS8
	Lecture Outline
	Note: Difference Between �Python IDLE and Python Programs
	Numbers are Objects to Python
	Problem-Solving Strategizing
	Arithmetic Summary
	Some Notes on �Floating Point & Complex Number Operations
	Comments in Python
	Variables
	Variables
	Variables in Python
	Assigning Names to Variables
	Assigning Names to Variables
	Variable Names in Python
	Variable Names in Python: �Other Conventions
	Objects
	Demo
	Procedural Abstraction: �The Function
	Functions
	More About Functions
	More About Functions
	Modules and Objects
	Example: Modules & Objects
	The Turtle Module Example
	How Do We “Call” A Function?
	Example of a Function Call
	Defining Your Own Function
	Example Definition
	A Function To Draw A Square
	Importing From A Module
	Importing From A Module
	YOUR TO-DOs
	Slide Number 34

