
An Introduction to
Computer Science

CS 8: Introduction to Computer Science, Winter 2018
Lecture #2

Ziad Matni

Dept. of Computer Science, UCSB

A Word About Registration for CS8
FOR THOSE OF YOU NOT YET REGISTERED:
•  If you are not on the waitlist, you will not get into this class

•  I will be going by the waitlist as I decide to let people in the class

•  There are a few spots opening up – I will let you know between today and
Wednesday about getting in

1/22/18 Matni, CS8, Wi18 2

Administrative
•  You must register on Piazza

–  https://piazza.com/ucsb/winter2018/cs8
–  You will not get my class announcements otherwise!

•  I’m not using GauchoSpace

•  Remember: Lab0 is due on Wednesday!
–  Use the Turnin service as shown in lab on Tue.

•  Class webpage: https://ucsb-cs8-matni-w18.github.io

1/22/18 Matni, CS8, Wi18 3

Switching About In The Labs…
 … is frowned upon LL

•  Please stick to the lab time that you have per your
registration
–  The labs are pretty full and at capacity

IF YOU WANT TO SWITCH LAB SECTIONS,
YOU MUST:

1.  Find a person in the other lab to switch with you
2.  Get the OK from BOTH T.A.s

1/22/18 Matni, CS8, Wi18 4

What is this “Computer” you speak of?

Let’s define a “computer”
•  Computer (n.): a computing device

•  A device that can be instructed to carry out
 an arbitrary set of
arithmetic or logical operations automatically

1/22/18 Matni, CS8, Wi18 5

Algorithms!

Computers = Computing Devices
Compute

 (v) To make sense of ; to calculate or reckon

•  What was the first computing tool ever?

1/22/18 Matni, CS8, Wi18 6

Likely invented around when humans fell out of the trees…

Using Abstraction is Key to Using
Computers (or any Complex Machine)

7

Do you need to know this?
çç çç çç
To know how to do this?

çç

çç

ç ç

Images from jblearning.com
1/22/18

Abstraction: (n) A mental model that removes complex details

Algorithm
•  A step-by-step logical procedure

 to solve a problem
–  Like a very precise recipe!

•  Named after famed
9th-century Persian mathematician
Al-Khawarizmi who put a name to
the practice and published a lot on it

1/22/18 Matni, CS8, Wi18 8

Examples of Everyday Use of Algorithms

•  Problem to Solve: What coat, if any, should I wear today?
•  Algorithm:

1.  Measure the outdoor temperature, T.
2.  If T ˂ 62F then wear my blue coat.

1.  If blue coat is dirty (dirt level ≥ 7), wear my brown coat instead
2.  If it’s also raining (Now raining = True), wear my black poncho instead

3.  If T ≥ 62F then don’t wear a coat
1.  Plan on buying ice-cream for lunch!

1/22/18 Matni, CS8, Wi18 9

And Now, With
More Detail…

a) Define outcomes: 1. wear blue coat,
 2. wear brown coat,
 3. wear black poncho,
 4. wear nothing and
 get ice-cream for lunch!

b) Get measures/values for T, Dirt_Level, Now_Rain

c) If ((T < 62) AND (Dirt_Level < 7)) then (outcome = 1)
d) If ((T < 62) AND (Dirt_Level ≥ 7)) then (outcome = 2)
e) If ((T < 62) AND (Now_Rain = True)) then (outcome = 3)

 Otherwise (outcome = 4)
f) The End
1/22/18 Matni, CS8, Wi18 10

b) Define conditions:
 1. T < 62 or not
 2. Dirt_Level < 7 or not
 3. Now_Rain = True or not

1.  Measure the outdoor temperature, T.
2.  If T ˂ 62F then wear my blue coat.

1.  If blue coat is dirty (dirt level ≥ 7), wear my brown coat instead
2.  If it’s also raining (Now raining = True), wear my black poncho instead

3.  If T ≥ 62F then don’t wear a coat
1.  Plan on buying ice-cream for lunch!

And Now, With
“Language”…

Measure(T)	

Get(Dirt_Level)	

Assess(Now_Raining)	

	

if	
 (T	
 <	
 62)	
 AND	
 (Dirt_Level	
 <	
 7)	

	
 then	
 Outcome	
 =	
 1	

if	
 (T	
 <	
 62)	
 AND	
 (Dirt_Level	
 >=	
 7)	

	
 then	
 Outcome	
 =	
 2	

if	
 (T	
 <	
 62)	
 AND	
 (Now_Raining	
 =	
 True)	

	
 then	
 Outcome	
 =	
 3	

else	

	
 Outcome	
 =	
 4	

	

End	
 Program	

1/22/18 Matni, CS8, Wi18 11

1.  Measure the outdoor temperature, T.
2.  If T ˂ 62F then wear my blue coat.

1.  If blue coat is dirty (dirt level ≥ 7), wear my brown coat instead
2.  If it’s also raining (Now raining = True), wear my black poncho instead

3.  If T ≥ 62F then don’t wear a coat
1.  Plan on buying ice-cream for lunch!

…that has specific
form and syntax

(like any “language” would!)

This is often called “pseudo-code” and is
the pre-cursor to writing a program in a

specific computer language

What is “Computer Science”?
The study of :

1.  The designs and uses of computers
as useful tools in our daily lives

2.  The use of algorithms to solve problems

1/22/18 Matni, CS8, Wi18 12

mostly around the creation, processing,
interpreting, communication, etc…

of information

Some Historical Background…

1/22/18 Matni, CS8, Wi18 13

The First Modern Computing Devices
(As a Novelty or For Specific Commercial Purposes)

Blaise Pascal
Mechanical device that could
add, subtract, divide & multiply using gears

B. Pascal (1623 – 1662)

“Pascaline” : a calculating machine (1652)

Jacquard Loom (invented 1801)

J. Jacquard (1752 – 1834)

Images from Wikimedia.org
1/22/18 Matni, CS8, Wi18 14

Joseph Jacquard
Jacquard’s Loom,
used punched cards to describe patterns

Computing Devices for General Purposes
(For Serious Math and Engineering Purposes)

•  Charles Babbage
–  Analytical Engine could calculate

polynomial functions and differentials

–  Calculated results, but also
stored intermediate findings
(i.e. precursor to computer memory)

–  “Father of Computer Engineering”

•  Ada Byron Lovelace
–  Worked with Babbage and foresaw

computers doing much more than
calculating numbers

–  Loops and Conditional Branching
–  “Mother of Computer Programming”

1/22/18 15

C. Babbage (1791 – 1871)

Part of Babbage’s
Analytical Engine

A. Byron Lovelace (1815 – 1852) Images from Wikimedia.org

Punched Card Data Processors
•  Herman Hollerith

–  Developed a “mechanical tabulator” in the early 1900s
and used it very successfully to do the census for
the US government

–  His Tabulating Machine Company (with 3 others) became
International Business Machines Corp. (IBM) in 1911

Matni, CS8, Wi18 16

H. Hollerith (1860 – 1929)

IBM punched card
“Accounting Machines”,
pictured in 1936.

But these were all
mostly single-purpose
calculating machines

1/22/18
Images from Wikimedia.org

The Modern Digital Computer
Alan Turing (UK)
•  Theorized the possibility of computing machines

capable of performing any conceivable mathematical
computation as long as this was representable
as an algorithm

–  Called “Turing Machines” (1936)
–  Lead the effort to create a machine to successfully decipher

the German “Enigma Code” during World War II
•  As seen in the movie “The Imitation Game”

1/22/18 Matni, CS8, Wi18 17

A. Turing (1912 – 1954)

Turing’s Legacy
•  Turing Machine : An abstract model

–  Calculating machine that can “read” in symbols on a medium
and “writes” out results on another, based on a “table” of instructions

–  What we call “computers” today owe a lot to this concept

•  The Turing Test : Asks “Can Machines Think?”
–  A test to see if a machine can exhibit intelligent behavior like a human
–  Example: CAPTCHA

•  Completely Automated Public Turing test to tell Computers and Humans Apart

•  The Turing Award
–  Called the “Nobel Prize” for computing
–  For contributions of lasting and major technical importance to the computer field
–  https://en.wikipedia.org/wiki/Turing_Award

1/22/18 Matni, CS8, Wi18 18

The REAL
A. Turing (1912 – 1954)

The ENIAC
electronic numerical integrator and computer – 1945

1/22/18 Matni, CS8, Wi18 19

100 feet long,
 by 10 feet high,
 by 3 feet deep

(took up a whole big room)

Weighed 30 tons!

Used by the military to calculate
trajectories (for bombs)

Could compute in 30 seconds
instead of 40 hours

Slowly replaced human “computers”

Computers
Since the Mid-20th Century
•  The invention of high-level computer languages

 and compilers (1950s & 1960s)
–  Up until then, operators fed these machines “1”s and “0”s for their

instructions
–  Required very abstract thinking and re-arrangement of

the computer “architecture”

•  Computer instructions became more English-language
friendly: Computers became practical to use

–  This needed “translator” programs (or compilers) to be the go-
betweens for the “high-level” languages and the machines

1/22/18 Matni, CS8, Wi18

Grace Hopper (1906 -1992)
Inventor of the first
high-level computer
language & compiler

Katherine Johnson (1918 -)
NASA “Computer”

John Von Neumann (1903 - 1957)
His computer architecture is what

we still use today

Konrad Zuse (1910 - 1995)
Built the first modern computer

with high-level programming

The Age of the Transistor
•  Transistors (1947) are

 semi-conducting electronic elements
–  Replace bulky “vacuum tubes” for switching functions
–  Could now create faster AND smaller computer machines
–  The basis for all modern digital technology

•  Transistors: The lynchpins of modern technology
–  Kept shrinking in size while getting cheaper to produce
–  We still talk about “Moore’s Law” as the concept behind computers’ progress:

 the number of transistors in a dense integrated circuit doubles
 approximately every two years

1/22/18 Matni, CS8, Wi18 21

The Age of The Personal Computer
•  Commercialization of personal computers (1970s and 1980s)

–  Made the machines a lot smaller and cheaper
–  Apple I and II, Macintosh (Apple), PC (IBM)
–  Lots of software created to help run the hardware for everyday uses

(Microsoft’s DOS and Windows, Lotus’ 123, etc…)

1/22/18 Matni, CS8, Wi18 22

The Individual Computer Gives Way to
the Networked Computer

•  Invention of computer networking protocols
–  Ethernet and TCP/IP (1980s)

•  Invention of the hyper-text document (and hence the WWW)
 in early 1990s by Berners-Lee and others

•  Deployment of ARPANET in the 1970s/80s (predecessor of the Internet)
–  At first, mostly just for university research use and the military
–  Once released to the public in the early 90s, it enabled us to

 swap pictures of cats… and world was never the same…

1/22/18 Matni, CS8, Wi18 23

Tim Berners-Lee (1955 -)
Inventor of the hyper-text doc and WWW

Computer Systems
•  Hardware

–  The physical computer
•  CPU, Memory ICs, Printed circuit boards
•  Plastic housing, cables, etc…

•  Software
–  The instructions and the data

 fed to/generated by the computer
•  Programs and applications
•  Operating systems

1/22/18 Matni, CS8, Wi18 24

What is Programming?
Instructing a computer what to do

•  Programs – a.k.a. “Software”
–  Includes operating system, utilities, applications, …
–  Computer just sits there until instructions fed to CPU

•  Machine language – basic CPU instructions
–  Completely numeric (as binary numbers) – i.e., computer “readable”
–  Specific to particular computer types – not portable

1/22/18 Matni, CS8, Wi18 25

High-Level Computer Languages
•  A way to program computers using “human-like” language

–  Easier to write/read (than 1s and 0s…):
•  e.g. result = (first + second) instead of “10011110101010110110”

–  Translated to machine language by compiler programs
•  Advantage: the same H-LL Program can be used on different machines!

1/22/18 Matni, CS8, Wi18 26

HLL
e.g.

Python

Assembly
Language

Machine
Language

via
compiler

via
assembler CPU directly to

Central Processing Unit Your program

High-Level Language Paradigms
•  Procedural languages – focus is on functions and process
•  FORTRAN (by IBM, 1957) – first commercially used high level language

–  Easy to learn – spawned thousands of new programmers
•  1970s: Golden Age of Programmers: C, PASCAL, BASIC

–  Even easier to learn/use – went into use well into 1990s

•  Object-oriented languages – focus on objects
–  C++ (early 1980s), …, Java (1996)
–  Idea is to build objects – then let them perform tasks

•  Multi-paradigm languages – combined features
–  e.g., Python (invented 1991… and still evolving)

1/22/18 Matni, CS8, Wi18 27

 ~1991…2018…

•  Derived from ABC – a language designed for
learning how to program
–  Python designed by Guido van Rossum (an ABC designer) –

to be a more general purpose language than ABC

•  Python is Open Sourced since it’s first version (1991)
–  So it is free!
–  Has a huge community of volunteer developers
–  Guido still the BDFL (Benevolent Dictator for Life)

•  Lots of handy modules ready to use at http://docs.python.org/
–  More on modules later…

1/22/18 Matni, CS8, Wi18 28

BDFL Guido (1956 -)

The Python Interpreter
A program that performs three steps over and over and …

… until exit() happens

1)  It reads Python instruction statements
•  From a standard input (a.k.a. stdin --- usually a keyboard)
•  Or from another file (usually a text file ending in .py)

2)  It executes Python commands

3)  It shows results (outcomes) of commands, if any

1/22/18 Matni, CS8, Wi18 29 Let’s Fire It Up And Try Some Arithmetic With It! (demo time!)

YOUR TO-DOs
q  Sign up on Piazza if you haven’t done so

q  https://piazza.com/ucsb/winter2018/cs8
q  Read the rest of Chapter 1

q  Get your textbook!!!

q  Homework:
q  Do Homework0 (turn it in in LAB on Tuesday 1/23)
q  Do Homework1 (due next Monday 1/29)

q  Lab:
q  Read Lab0 and prepare for it
q  Go to lab on Tuesday 1/23 and do it!

q  Solve world hunger yet? Global warming?
q  Eat at least half of your vegetables

1/22/18 Matni, CS8, Wi18 30

1/22/18 Matni, CS8, Wi18 31

