
Recursive Functions in Python

CS 8: Introduction to Computer Science, Winter 2018
Lecture #14

Ziad Matni

Dept. of Computer Science, UCSB

Administrative
•  Homework #8 is DUE on Wed. (3/14)
•  Lab #6 due Wed 3/14
•  Remaining on the calendar… This supersedes anything on the syllabus

3/11/18 Matni, CS8, Wi18 2

DATE TOPIC ASSIGNED DUE

Mon. 3/5 File I/O ; Formats for Outputs Hw #7
Lab #5

Hw #6
Lab #5 Wed. 3/7 Digital Images ; While-Loops

Mon. 3/12 Recursive Functions Hw #8
Lab #6

Hw #7, Hw #8
Lab #6
Proj #2 Wed. 3/14 Review for the Final Exam

Administrative
•  Turn in Homework #7
•  Homework #8 is DUE on WEDNESDAY (3/14)

–  That’s in 2 days…

•  Lab #6 due Wed 3/14
•  Project #2 due Fri 3/16

3/11/18 Matni, CS8, Wi18 3

Preparation for the Final Exam
•  We will have a review session in class on Wednesday

•  I have put up Practice Questions for you
–  With answers!

3/11/18 Matni, CS8, Wi18 4

Lecture Overview
Recursive Functions

See Ch. 9 (thru p. 315) in textbook

3/12/18 Matni, CS8, Wi18 5

How Do Functions Work?
•  Consider these 3 functions and tell me: what is demo(-4) ?

def	demo(x):	
	return	x	+	f(x)	

	
def	f(x):	
	return	11*g(x)	+	g(x/2)	

	
def	g(x):	
	return	-1	*	x	

3/12/18 Matni, CS8, Wi18 6

How Do Functions Work?
•  Consider these 3 functions and tell me: what is demo(-4) ?

def	demo(x):	
	return	x	+	f(x)	

	
def	f(x):	
	return	11*g(x)	+	g(x/2)	

	
def	g(x):	
	return	-1	*	x	

3/12/18 Matni, CS8, Wi18 7

-4	+	f(-4)	

11*g(-4)	+	g(-2)	

-1*-4	
=	4	

-1*-2	
=	2	

11*4	+	2	
=	46	

-4	+	46	
=	42	

What Keeps Track of All of This?!?
•  Ans: The Stack

(1) keeps separate variables for each function call…
(2) remembers where to send results back to…

The stack is a special part of your computer’s memory.
The compiler usually spells-out how the stack must be used with functions.

3/12/18 Matni, CS8, Wi18 8

3/12/18 Matni, CS16, Fa17 9

A child couldn't sleep,
so her mother told a story about a little frog,

 who couldn't sleep,
so the frog's mother told a story about a little bear,

 who couldn't sleep,
so bear's mother told a story about a little weasel

 ...who fell asleep.
 ...and the little bear fell asleep;
 ...and the little frog fell asleep;

...and the child fell asleep.

Recursive Functions
•  Recursive: (adj.) Repeating unto itself
•  A recursive function contains a call to itself

•  When breaking a task into subtasks, it may be
 that the subtask is a smaller example of the same task

•  Just like functions-calling-functions,
 recursive functions make use of the stack

3/11/18 Matni, CS8, Wi18 10

Simple Example: Factorial Function
Recall factorials:

2! = 1 * 2 , 3! = 1 * 2 * 3, 4! = 1 * 2 * 3 * 4, …
N! = 1 * 2 * … * (N-1) * N

There’s some repetition here… We could think of it as a loop

(how would you write that?)
 def factorial(n):
 f = 1
 for m in range(1, n+1):
 f = f * m
 return f

3/11/18 Matni, CS8, Wi18 11

Consider the Following…
def	fac(N):	
	return	N	*	fac(N-1)	 	#	Yes,	this	is	legal!	

What happens when fac(4)	is called?
A. It returns the correct result (i.e. 24)
B. The execution never stops
C. It produces a return value that is incorrect

3/12/18 Matni, CS8, Wi18 12

Just ‘Cause It’s Legal,
Doesn’t Mean It’s Good Code!!!

def	fac(N):	
	return	N	*	fac(N-1)	 	#	Yes,	this	is	legal!	

This goes on and on into an infinite loop!

Q: Why?
A: It’s missing a “base case” (a.k.a a “stopping case”)

Q2: What’s a good “base case” here?

3/12/18 Matni, CS8, Wi18 13

Base Case

def	fac(N):	
	if	N	<=	1:	
	 	return	1	
	else:	
	 	return	N	*	fac(N-1)	

•  Recursive functions should know when to stop
•  There must be (at least) one base case, and the recursive step must

converge on a base case, otherwise you get “infinite recursion”

3/12/18 Matni, CS8, Wi18 14

Under the Hood…
>>> fac(1)
I get:

 1

>>> fac(5)

3/12/18 Matni, CS8, Wi18 15

def	fac(N):	
	if	N	<=	1:	
	 	return	1	
	else:	
	 	return	N	*	fac(N-1)	

easy-peasy

à 5 * fac(4)
à 5 * (4 * fac(3))
à 5 * (4 * (3 * fac(2)))
à 5 * (4 * (3 * (2 * fac(1))))
à 5 * (4 * (3 * (2 * 1))) = 120

Every step, the new
values are put into the
STACK and kept track
of by the computer

Exercise
•  What does MyRecFun(3) do?

def	MyRecFun(n):					
	if	n	==	0:	
	 	return	2					
	else:	
	 	return	2*MyRecFun(n-1)

 3/12/18 Matni, CS8, Wi18 16

Another Example:
Mathematical Series

•  Popular example: Fibonacci Series
F(n) = 1, 1, 2, 3, 5, 8, 13, …, F(n-1) + F(n-2)

•  There’s some repetition here…
 We could think of it as a loop also

•  Or we could think of it as a recursive function!

3/11/18 Matni, CS8, Wi18 17

Fibonacci Recursion
•  What is/are the BASE CASE(S)?
•  What is the recursive formula?

 def	fibo(n):					
	 	 	 	if	n	==	0:	
	 	 	 	 	return	0					
	 	 	 	if	n	==	1:									
	 	 	 	 	return	1		
	 	 	 	else:	#	is	this	else	necessary?	
	 	 	 	 	return	fibo(n-1)	+	fibo(n-2)	

3/11/18 Matni, CS8, Wi18 18

File called:
recursive.py
now online

Example: Linear Number Series
•  Mathematical Linear Series
Example:

S(n) = 0, 1, 4, 13, 40, … for n = 0 to ∞

What’s the pattern?
Linear series: Sn+1 = A.Sn + B where A & B are constants

In the example above: A = 3 and B = 1
What is our base-case? What is our recursion?

3/12/18 Matni, CS8, Wi18 19

Example: Linear Number Series
•  Mathematical Linear Series
Example:

S(n) = 0, 1, 4, 13, 40, … for n = 0 to ∞

Linear series: Sn+1 = 3.Sn + 1 and S0 = 0

def	series(n):	

	if	n	<=	0:	
	 	return	0	
	return	(3*series(n-1)	+	1)	

3/12/18 Matni, CS8, Wi18 20

recursion base case

Example: Reversing a String
•  Recursion in strings
Example: Reverse a string

Given a string (e.g. “hello”), you would need to return “olleh”
What does a recursive algorithm look like? What is my base-case?

Hints: if s	=	‘hello’, what is s[1:]	?

def	revStr(s):	
				if	len(s)	==	0:	
								return	s	
				return	revStr(s[1:])	+	s[0]	

3/12/18 Matni, CS8, Wi18 21

Recursive Drawing Examples
•  Listing 9.2

(also in recursive.py) –
uses drawSquare function
from chapter 2

def	nestedBox(aTurtle,side):	
				if	side	>=	1:	 	 	 	 	 	 	#	recursive	step	
								drawSquare(aTurtle,	side)		 		
								nestedBox(aTurtle,	side	-	5)	
#	base	case:	do	nothing	(side	will	be	<	1	and	too	small	to	draw)	

3/11/18 Matni, CS8, Wi18 22

def	drawSquare(aTurtle,side):					
	for	i	in	range(4):									
	 	aTurtle.forward(side)								
	 	aTurtle.right(90)	

Other Recursive Drawing Examples
•  Other examples in the recursive_draw.py file

–  Draw tick marks on a ruler

•  Examples from the textbook and in other files
–  Listing 9.4 – draw nested triangles
–  In file triangles.py
–  Note demo introduces command line argument too

–  Listing 9.3 (and exercises 9.11-9.13) – draw tree
–  In file trees.py

3/11/18 Matni, CS8, Wi18 23

YOUR TO-DOs
q  Finish up all your assignments and by their due dates!

ü  Homework #8 by Wednesday in class
ü  Lab #6 by Wednesday at 11:59 PM
ü  Project #2 by Friday at 11:59 PM

q  Final Exam review in class on Wednesday
ü  Bring your questions! J

3/11/18 Matni, CS8, Wi18 24

3/11/18 Matni, CS8, Wi18 25

