
You Know More Than You Think… ;)

3/6/18 Matni, CS8, Wi18 1

Digital Images in Python
While Loops

CS 8: Introduction to Computer Science, Winter 2018
Lecture #13

Ziad Matni

Dept. of Computer Science, UCSB

Administrative
•  Homework #7 is due ON MONDAY 3/12
•  Lab #5 due ON FRIDAY 3/9 (EXTENDED)
•  Remaining on the calendar… This supersedes anything on the syllabus

3/6/18 Matni, CS8, Wi18 3

DATE TOPIC ASSIGNED DUE

Mon. 3/5 File I/O ; Formats for Outputs Hw #7
Lab #5

Hw #6
Lab #5 Wed. 3/7 Digital Images ; While-Loops

Mon. 3/12 Recursive Functions Hw #8
Lab #6

Hw #7, Hw #8
Lab #6
Proj #2 Wed. 3/14 Review for the Final Exam

Lecture Outline
Chapter 6
•  Digital Images on Computers
•  Indexed Color Schemes
•  The cImage Module

•  While-Loops

3/6/18 Matni, CS8, Wi18 4

Digital Images on Computers
•  Two types of images: raster vs. vector

•  Raster (a.k.a “bit-map”) images
–  Most picture formats from photos, paint/shop programs
–  Typically JPEG (.jpg, .jpeg) types
–  Made of a finite number of pixels (or dots)

•  Quality of picture is measured in dots per inch (dpi)
•  Close-ups look blurry or “pixelated”

–  The higher the resolution, the more pixels are needed
•  More pixels mean larger file sizes to store the image

–  Raster images are a great choice for photographic pictures

3/6/18 Matni, CS8, Wi18 5

Starting Chapter 6

JPEG Example
with Different Quality Settings

Lower dpi Higher dpi

3/6/18 6

Digital Images on Computers
Vector (a.k.a “object-based”) images
•  Most picture formats that come from drawing programs
•  Typically SVG (.svg) types
•  Not pixel representation – uses mathematical formulae to represent shapes

–  Close-ups or pull-backs look smooth and clean
•  Resolution is always good

–  File size is constant (usually small)
•  Great for logos, simple representations of real objects
•  Isn’t very good for exact photographic representations

3/6/18 Matni, CS8, Wi18 7

Examples of Raster vs Vector
Raster (bit-map) Vector

3/6/18 Matni, CS8, Wi18 8

Same Examples (zoomed in)
Raster (bit-map) Vector

Shows “pixilation” Shows perfect reproduction

3/6/18 Matni, CS8, Wi18 9

Indexed Colors in Images
•  Colors on a monitor are represented by

 the RGB scheme
–  256 variations on each of Red, Green, and Blue palates
–  Mixing gives a full palate of colors

 (per projected, not reflected light)
–  Giving you a combination of over 16 million colors

•  Are there more than 16 million colors in the real world?

3/6/18 Matni, CS8, Wi18 10

Indexed Colors in Images
Q: Are there more than 16 million colors in the real world?
A: Yes! (well, probably, not that I can tell… :\)

A fixed scheme, like RGB, is necessary because:

1.  It puts an upper limit
(on colors, on file sizes, on time to render pictures onto a screen, etc…)

2.  It accommodates display technologies
(they’re really advanced, but they’re not limitless in their capabilities!)

3.  It is good enough for 99.99% of computer (esp. Web) users!

3/6/18 Matni, CS8, Wi18 11

The RGB Scale
•  256 settings for Red è 8 bits (why?)
•  256 settings for Green è 8 bits
•  256 settings for Blue è 8 bits

•  1 bit = 2 combinations (0 or 1)
•  2 bits = 4 combinations (00, 01, 10, or 11)
•  N bits = 2N combinations

•  RGB has 24 bits (8 for each R,G,B) to use to define a “color”
–  224 is approximately 16 million…

3/6/18 Matni, CS8, Wi18 12

3/6/18 Matni, CS8, Wi18 13

Wikipedia.com

1 BIT
2 BITS

4 BITS 16 BITS
24 BITS

The number of bits used to describe a color pallet
 exponentially raises the number of colors used in a computer graphic

Image Processing with
the cImage Module

•  Textbook’s cImage module processes raster data

•  Designed to work with .gif	and .ppm	formats only
–  Can install a library for.jpg format, but not available in lab

•  Chapter 6 uses objects of the module’s Pixel,
FileImage, EmptyImage and ImageWin classes

3/6/18 Matni, CS8, Wi18 15

Using cImage	
•  Import cImage like this:
	 	 	from	cImage	import	*	

–  This allows you to use cImage methods/functions without having
to say “cImage.” first

–  Example:
Instead of:
im	=	cImage.FileImage(‘x.jpg’), you could just say:
im	=	FileImage(‘x.jpg’)	

3/6/18 Matni, CS8, Wi18 16

Construct a Window
•  To construct a window, use this:

title	=	"My	Picture"	
width	=	300	 	#	units	is	pixels	
height	=	300 	#	units	is	pixels	
myWin	=	ImageWin(title,	width,	height)		

3/6/18 Matni, CS8, Wi18 17

3/6/18 Matni, CS8, Wi18 18

3/6/18 Matni, CS8, Wi18 19

A Pixel class
•  A way to manage the color of one pixel

•  A color = amounts of (red, green, blue)
–  When coded by the RGB color model
–  Range of each part: 0 to 255

whitePixel	=	cImage.Pixel(255,255,255)	
blackPixel	=	cImage.Pixel(0,0,0)		
purplePixel	=	cImage.Pixel(255,0,255)	
yellowPixel	=	cImage.Pixel(255,255,0)	

	

•  Methods: getRed(), setBlue(value), …some others…

The “mixes” don’t
always work like, say,

mixing paints do

3/6/18 Matni, CS8, Wi18 20

Image Classes in cImage:
EmptyImage and FileImage	

•  Create a new (empty) image with dimensions:
–  Create new: img	=	EmptyImage(cols,	rows)	

•  Use an existing image to get
–  Or use existing: img	=	FileImage(filename)		#	Careful	of	where	the	file	is	

•  How to manage a set of pixels, organized by rows and columns
–  x denotes the column – leftmost x is 0
–  y denotes the row – topmost y is 0

•  Methods:
	 	getWidth(),	getHeight(),	getPixel(x,	y),		
	 	setPixel(x,	y,	pixel),		save(filename),		
	 	… and draw(window)	

3/6/18 Matni, CS8, Wi18 21

ImageWin class
•  A window frame that displays itself on-screen

window	=	cImage.ImageWin(title,	width,	height)	
image.draw(window)	

•  Mostly just used to hold (new or existing) images,
but also has some methods of its own
–  e.g., getMouse()	– returns (x,y)	tuple where mouse is clicked

(in window, not necessarily same as image)
–  exitOnClick() – closes window and exits program on mouse click

3/6/18 Matni, CS8, Wi18 22

Demo!
from	cImage	import	*	
im	=	FileImage('./leo.gif') 	#	load	an	existing	image	
title	=	"My	Friend	Leo"	
width	=	600 	 	#	units	is	pixels	
height	=	600 	 	#	units	is	pixels	
myWin	=	ImageWin(title,	width,	height)	#	Define	myWin	
im.draw(myWin)	 	#	Draws	the	image	in	myWin	
	
im.getWidth() 	 	#	Report	on	the	height	of	the	existing	image	
im.getHeight()	 	#	Report	on	the	width	of	the	existing	image	
	
whitePix	=	Pixel(255,255,255)	
im.setPixel(150,	100,	Pixel(255,255,255))	
for	x	in	range(500):	

	im.setPixel(x,	100,	whitePix)	
	im.setPixel(150,	x,	whitePix)	

3/6/18 Matni, CS8, Wi18 23

Negative Images & Grayscale
•  Negative images – “flip” each pixel color

for	row	in	range(height):	
			for	col	in	range(width):	
						#	get	r,	g,	b	from	old	image	here	
						negPixel	=	Pixel(255	-	r,	255	-	g,	255	-	b)	
						newImage.setPixel(col,	row,	negPixel)	

–  Listings 6.1 and 6.2 in textbook – negimage.py

•  Grayscale similar (Listings 6.3 and 6.4):
#	...	as	above	through	get	r,	g,	b	
						avg	=	(r	+	g	+	b)	//	3	
						grayPixel	=	Pixel(avg,avg,avg)	

–  Listings 6.3 and 6.4 – grayimage.py

3/6/18 Matni, CS8, Wi18 24

3/6/18 Matni, CS8, Wi18 25

Flow of an Iteration Structure

? T

F

Start here

Quit the loop

Do
something

Ask: Is “this”
condition True?

3/6/18 Matni, CS8, Wi18 26

EXAMPLE:
for	x	in	range(1,	10):	

	print	(x)	

Ask: is 1 <= x < 10?

If True, the do the following:
print x, then make x = x + 1

If False, then quit the loop

Review: 3 Control Structure Types

? T

F

? TF

? T

F

Iteration
Loops

Selection
If-else statements Sequence

3/6/18 Matni, CS8, Wi18 27

Repetition with a while loop
•  while condition:
				# executes over and over until a condition is False

•  Used for indefinite iteration

–  When it isn’t possible to predict how many times a loop needs to
execute, unlike with for loops

•  We use for loops for definite iteration
(e.g., the loop executes exactly n times)

3/6/18 Matni, CS8, Wi18 28

Applying while
•  Can be used for counter-controlled loops:

n	=	500	
counter	=	0																			#	(1)	initialize	
while	counter	<	n:												#	(2)	check	condition	
				print(counter	*	counter)	
				counter	=	counter	+	1					#	(3)	change	state	

–  But NOTE that this is a definite loop – easier to use for	loop	

3/6/18 Matni, CS8, Wi18 29

Repetition with a while loop
•  While loops won’t run at all if condition starts out as false

•  While loops run forever if condition never becomes false
(i.e. if it always stays true)

3/6/18 Matni, CS8, Wi18 30

Applying while	
•  Better application example – unlimited data entry:

#	(1)	initialize	
AllGrades	=	0	
grade	=	input("enter	grade	or	q	to	quit:	")	
#	(2)	check	condition	
while	grade	!=	"q":	
	 	#	process	grade	here,	then	get	next	one	
	 	AllGrades	=	AllGrades	+	int(grades)	
	 	#	(3)	change	states	
	 	grade	=	input("enter	grade	or	q	to	quit:	")	

#	While	loop	has	ended,	now	do	other	stuff…	
print("You're	all	done	now!")	

3/6/18 Matni, CS8, Wi18 31

Top-Design of Programs: Step 1
•  Think of the simplest flowchart for your problem

and think of the “big picture”

Example:
•  I want to print all numbers between 1 and 100

•  Notice: just one rectangle in representation

3/6/18 Matni, CS8, Wi18 32

Very
general;
top-level
algorithm

Step 2: Replace Any Rectangle By
Two Rectangles In Sequence

•  This “stacking rule” can apply repeatedly
•  For example:

1.  Get data
2.  Process
3.  Show results

Step 2

3/6/18 Matni, CS8, Wi18 33

Step 3: Replace Any Rectangle By Any
Control Structure

•  This “nesting rule” also applies repeatedly – each control structure has its own
rectangles

•  e.g., nest a while loop in an if structure:
if		n	>	0:	
			while	i	<	n:	
						print(i)	
						i	=	i	+	1	

Step 3 if, if/else,
for, while

3/6/18 Matni, CS8, Wi18 34

Step 4: Apply Steps #2 And #3 Repeatedly,
And In Any Order

•  Stack, nest, stack, nest, nest, stack, …
gets more and more detailed as one proceeds
–  Think of control structures as building blocks that can be

combined in two ways only.

•  Overall process is known as “top-down design by stepwise
refinement”

•  Fact: any algorithm can be written as a combination of
sequence, selection, and iteration structures.

3/6/18 Matni, CS8, Wi18 35

3/6/18 Matni, CS8, Wi18 36

