
Lists in Python

CS 8: Introduction to Computer Science, Winter 2018
Lecture #10

Ziad Matni

Dept. of Computer Science, UCSB

Administrative
•  Homework #5 is due today
•  Homework #6 is out and DUE on MONDAY (3/5)

•  Lab #4 for tomorrow – due on Wed.

•  Project #2 will be issued by the end of the week

2/26/18 Matni, CS8, Wi18 2

Sequential Data Types
•  Data types that are made up of other data types
•  Example:

 Strings are made up of character elements

•  Strings are immutable
–  You can’t exchange a character in strings by simple assignment

–  Example:
Let’s say, s = ‘book’, you cannot issue s[3] = ‘m’ and expect
the string s = ‘boom’
(it won’t work that way, you’d have to do other manipulation)

2/26/18 Matni, CS8, Wi18 3

Starting chapter 4

Lists – More Versatile Sequences

•  Lists are another sequential data type

•  But unlike strings, lists …
–  can hold any type of data (not just characters)
–  are mutable – legal to change list elements

2/26/18 Matni, CS8, Wi18 4

Lists – More Versatile Sequences

•  Use square brackets, [] to define a list
fruit	=	['apple',	'pear',	'orange',	'lemon']	

•  And use [] to access elements too
fruit[2] gives you 'orange'	

–  Indexing works the same as strings
•  i.e. start with [0]

–  Index slicing works the same as with strings too
•  E.g. fruit[1:] = [‘pear’, ‘orange’, ‘lemon’]
•  E.g. fruit[:1] = [‘apple’, ‘pear’]

2/26/18 Matni, CS8, Wi18 5

List Examples
>>> li = [‘abcd’, 2, 3, ‘efg’, True, 7]
>>> li
[‘abcd’, 2, 3, ‘efg’, True, 7]

>>> li[0]
‘abcd’

>>> li[1] - li[2]
-1

>>> li[1] + li[0]
TypeError: cannot concatenate 'str' and 'int' objects

>>> for i in li:

 print(i)

2/26/18 Matni, CS8, Wi18 6

DEMO!
Let’s try it!

Note: mixed data types
can be placed inside 1
list

What will this do?

Other Operations Involving Lists
•  Built-in functions like len (same as strings)

–  Use max and min for extremes (work for strings too)
–  And sum (only if all elements are number types)

•  Test membership in lists, just like you can with other vars:
 in not	in	

•  Some examples to try:
li	=	[5,	6,	9,	-22,	0,	42]	
len(li)	
max(li) 	 	 	9	in	li	
min(li) 	 	 	99	in	li	
sum(li) 	 	 	0	not	in	li	
	

	2/26/18 Matni, CS8, Wi18 7

More Operations Involving Lists
•  But unlike strings, can use built-in del operator:

fruit	>>>	['apple',	'pear',	'orange']	
del	fruit[1]	
fruit	>>>	['apple',	'orange']	

•  Also can use [] with = to change elements too
(Note: you CANNOT do that with strings…)

fruit[0]	=	'tangerine'	

fruit	>>>	['tangerine',	'orange']	

2/26/18 Matni, CS8, Wi18 8

List Operations: + and *
•  + concatentates (but both operands must be lists)

nums	=	[20,	-92,	4]	

nums	+	9	>>>	TypeError	
nums	+	[9]	>>>	[20,	-92,	4,	9]	

•  * repeats (one operand is a list, other is an int)
nums	*	[2]	>>>	TypeError	
nums	*	2		>>>	[20,	-92,	4,	20,	-92,	4]	

•  Note: can make a list of lists, but still just 1 nums	
[nums]	*	2		>>>	[[20,	-92,	4],	[20,	-92,	4]]	
–  Explained next slide

2/26/18 Matni, CS8, Wi18 9

Actually, Lists Hold References
•  Look at prior example a different way to see this

[nums,	nums]	==	[nums]	*	2	>>>	True	

•  Now give a name for the list of list references
numList	=	[nums,	nums]	

numList	>>>	[[20,	-92,	4],	[20,	-92,	4]]	

2/26/18 Matni, CS8, Wi18 10

Actually, Lists Hold References
•  Delete an item from original list – see result!

del(nums[0])	

numList	>>>	[[-92,	4],	[-92,	4]]	

•  WHY ARE ALL OF THEM AFFECTED?!?!?!

•  Look at p. 124 in textbook (especially Fig. 4.4)

2/26/18 Matni, CS8, Wi18 11

Another Way To Create A List
Use: list()

•  With no arguments, creates an empty list
list()	>>>	[]	

•  Or pass any sequence as an argument
list(range(3))	>>>	[0,	1,	2]	
list('cat')	>>>	['c',	'a',	't']	
	

•  Makes a copy of another list
nums	=	[-92,	4]	
numsCopy	=	list(nums)	
nums[0]	=	7	
nums	>>>	[7,	4]	
numsCopy	>>>	[-92,	4]	

2/26/18 Matni, CS8, Wi18 12

Let’s try it!

Other Built-In List Functions
See table 4.2 in textbook: all used as listname.function()

•  append
•  insert
•  pop
•  sort
•  reverse
•  index
•  count
•  remove

2/26/18 Matni, CS8, Wi18 13

DEMO!
Let’s try it!

Methods To Add/Remove List Items

•  alist.append(item) – similar but not same as alist	=	alist	+	[item] –
append does not make a new list, just adds an item to old list

•  alist.insert(i,item) – inserts item at ith index;
 later items’ indices all move up (i.e. increased) by one (toward end)

•  alist.remove(item)	– removes first occurrence of item;
 later items’ indices all move down (i.e. reduced) by one
–  You get a ValueError if item not in the list

•  alist.pop()	– removes and returns the last item in a list
–  alist.pop(i) – removes and returns ith (index) item
–  IndexError if empty list or i not valid for the list

2/26/18 Matni, CS8, Wi18 14

Let’s try it!

Some Other List Methods
•  alist.index(item)	– returns index of first occurrence of item

–  ValueError if item not in the list

•  alist.count(item)	– returns number of occurrences of item in the list

•  alist.sort()	– sorts list items by value into ascending order
(gives you an error if items not comparable)
 IT ALSO CHANGES alist!

•  alist.reverse()	– reverses the order of all items in the list
 IT ALSO CHANGES alist!

•  Q. How can we sort items into descending order?
2/26/18 Matni, CS8, Wi18 15

Making a List by splitting a String

•  A handy string method named split returns a list of substrings
–  Example: string	=	"once	upon	a	time",

so string.split()	=	['once',	'upon',	'a',	'time']	

•  Application for split: count how many words are in a sentence!
	 	 	def	countWords(string):	

					 	 	substrings	=	string.split()	
					 	 	return	len(substrings)	

2/26/18 Matni, CS8, Wi18 16

Modifying a split

•  Default delimiter is white spaces
–  That is, consecutive spaces, tabs, and/or newline characters

•  You CAN specify different delimiters
–  Example 1: string	=	'dog/cat/wolf/	/panther'	

	 	string.split('/')	=	['dog',	'cat',	'wolf',	'	',	'panther']	
	
–  Example 2: string	=	'Salt-N-Peppa,	Rihanna,	Missy	Elliot'	

	string.split(',')	=	['Salt-N-Peppa',	'Rihanna',	'Missy	Elliot']	
	

2/26/18 Matni, CS8, Wi18 17

Finding Extreme Values
•  Usually able to use built-in functions max, min

–  But what if we didn’’t have such functions?
–  Or what if they don’’t fit our problem (e.g. max behaved oddly)?

•  Basic algorithm applies to any extreme (i.e. min OR max) finding
Use the value of first list item and call it the “extreme”
Loop through remaining items in the list:

 If “current” more extreme than stored “extreme” item:

 Replace stored “extreme” item with “current” value

–  Assumes there is at least one item in the list

2/26/18 Matni, CS8, Wi18 18

4, 5, 2, 10, 9, 7

4 Max is: 5 10

Find-the-Maximum Algorithm
1. Store value of first list item
2. Loop through remaining items:
 If current item > than stored item:
 Replace stored extreme item

def	getMax(alist):	
		maxSoFar	=	alist[0]	
		for	item	in	alist:	
		 	if	item	>	maxSoFar:	
		 	 	maxSoFar	=	item	

return	maxSoFar	

2/26/18 Matni, CS8, Wi18 19

Calculating Means and Medians
•  Mean (Average) = (max – min) / sum
•  Median (middle item) is more complex…

–  This isn’t in any list function, so we have to develop it ourselves

 sort it first and then find the middle value…

If there’s an even number of entities, then employ an average calc…

2/26/18 Matni, CS8, Wi18 20

1 5 2 10 8 7 7 6 3

1 2 3 5 6 7 7 8 10

1 2 3 5 6 7 7 8 Median = 5.5

Median = 6

Example:

“Find the Median” Algorithm
1.  Sort the list first

2. Determine the length of the list (why?)
3. Find the middle of the list (length/2)

a)  If the length is an odd number,
 then there’s only 1 middle

b) If the length is an even number,
 then identify the middle 2 and get their average

2/26/18 Matni, CS8, Wi18 21

“Find the Median” Function
def	median(alist):	

	#	Make	a	copy	so	we	won't	change	"alist"	itself	
	copylist	=	alist	 		
	copylist.sort()	#	guess	what	this	does??	

	
	if	len(copylist)%2	==	0: 	#	if	length	of	list	is	even,	identify	the	middle	2	numbers	
	 	rightmiddle	=	len(copylist)//2	
	 	leftmiddle	=	rightmiddle	-	1	
	 	median	=	(copylist[leftmiddle]	+	copylist[rightmiddle])/2	
		
	else:	 	#	if	length	of	list	is	odd,	just	find	the	middle	number	
	 	index_of_middle	=	len(copylist)//2	
	 	median	=	copylist[index_of_middle]	

	
	return	median	

2/26/18 Matni, CS8, Wi18 22

YOUR TO-DOs
q  Do Homework6 (due Monday 3/5)
q  Do Lab4 tomorrow

q  Walk on the beach

2/26/18 Matni, CS8, Wi18 23

2/26/18 Matni, CS8, Wi18 24

